Common Points on Elliptic Curves: The Achilles' Heel of Fault Attack Countermeasures
نویسنده
چکیده
منابع مشابه
Fault Attack on Elliptic Curve with Montgomery Ladder Implementation
In this paper, we present a new fault attack on elliptic curve scalar product algorithms. This attack is tailored to work on the classical Montgomery ladder method when the y-coordinate is not used. No weakness has been reported so far on such implementations, which are very efficient and were promoted by several authors. But taking into account the twist of the elliptic curves, we show how, wi...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملOn the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملLightweight Coprocessor for Koblitz Curves: 283-Bit ECC Including Scalar Conversion with only 4300 Gates
We propose a lightweight coprocessor for 16-bit microcontrollers that implements high security elliptic curve cryptography. It uses a 283-bit Koblitz curve and offers 140-bit security. Koblitz curves offer fast point multiplications if the scalars are given as specific τ -adic expansions, which results in a need for conversions between integers and τ -adic expansions. We propose the first light...
متن کاملOn the Elliptic Curves of the Form $y^2 = x^3 − pqx$
By the Mordell- Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves, where p and q are distinct primes. We give infinite families of elliptic curves of the form y2=x3-pqx with rank two, three and four, assuming a conjecture of Schinzel ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014